day01——面向对象高级

各位同学,接下来的三天课程中,我们继续学习面向对象的相关课程。面向对象是写Java程序的核心套路,如何你不懂面向对象,那就相当于Java你白学了。所以在接下来的三天时间里,各位同学也需要克服重重困难好好学习。

前面我们说过面向对象最核心的套路是:设计对象来处理数据,解决问题。 如果你把面向对象高级这一部分课程学好,你设计出来的对象将更加好用。

在正式学习面向对象高级课程之前,我给大家提一些学习上的建议。目前我们学习的面向对象高级部分的知识点,就像一个一个的螺丝钉,在学习过程中你可能并不知道这些螺丝钉是用在哪里的,解决的什么问题。必须等这些内容都学习完之后,才能知道用这些螺丝钉可以用来搞飞机、造航母、造火箭。

所以,现阶段我们在学习过程中,主要关注下面几点就可以了。等整个基础课程学习完之后,再慢慢感在到哪里用。

一、静态

接下来,我们学习一下面向对象编程中很常见的一个关键字static.

static读作静态,可以用来修饰成员变量,也能修饰成员方法。我们先来学习static修饰成员变量。

1.1 static修饰成员变量

Java中的成员变量按照有无static修饰分为两种:类变量、实例变量。它们的区别如下图所示:

由于静态变量是属于类的,只需要通过类名就可以调用:类名.静态变量,只要在一个对象修改,类的全部对象都修改

实例变量是属于对象的,需要通过对象才能调用:对象.实例变量

  • 下面是代码演示(注意静态变量,和实例变量是如何调用的)

为了让大家对于这两种成员变量的执行过程理解更清楚一点,在这里给大家在啰嗦几句,我们来看一下上面代码的内存原理。

  • 最后总结一下
1
2
- 1.类变量:属于类,在内存中只有一份,用类名调用
- 2.实例变量:属于对象,每一个对象都有一份,用对象调用

1.2 static修饰成员变量的应用场景

学习完static修饰成员变量的基本使用之后,接下来我们学习一下static修饰成员变量在实际工作中的应用。

在实际开发中,如果某个数据只需要一份,且希望能够被共享(访问、修改),则该数据可以定义成类变量来记住。

我们看一个案例**

需求:系统启动后,要求用于类可以记住自己创建了多少个用户对象。**

  • 第一步:先定义一个User类,在用户类中定义一个static修饰的变量,用来表示在线人数;
1
2
3
4
5
6
7
public class User{
public static int number;
//每次创建对象时,number自增一下
public User(){
User.number++;
}
}
  • 第二步:再写一个测试类,再测试类中创建4个User对象,再打印number的值,观察number的值是否再自增。
1
2
3
4
5
6
7
8
9
10
11
12
public class Test{
public static void main(String[] args){
//创建4个对象
new User();
new User();
new User();
new User();

//查看系统创建了多少个User对象
System.out.println("系统创建的User对象个数:"+User.number);
}
}

运行上面的代码,查看执行结果是:系统创建的User对象个数:4

1.3 static修饰成员方法

各位同学,学习完static修饰成员变量之后,接下来我们学习static修饰成员方法。成员方法根据有无static也分为两类:类方法、实例方法

有static修饰的方法,是属于类的,称为类方法;调用时直接用类名调用即可。类方法意思是可以直接用类调用的方法

无static修饰的方法,是属于对象的,称为实例方法;调用时,需要使用对象调用。

我们看一个案例,演示类方法、实例方法的基本使用

  • 先定义一个Student类,在类中定义一个类方法、定义一个实例方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Student{
double score;

//类方法:
public static void printHelloWorld{
System.out.println("Hello World!");
System.out.println("Hello World!");
}

//实例方法(对象的方法)
public void printPass(){
//打印成绩是否合格
System.out.println(score>=60?"成绩合格":"成绩不合格");
}
}
  • 在定义一个测试类,注意类方法、对象方法调用的区别
1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test2{
public static void main(String[] args){
//1.调用Student类中的类方法
Student.printHelloWorld();

//2.调用Student类中的实例方法
Student s = new Student();
s.printPass();

//使用对象也能调用类方法【不推荐,IDEA连提示都不给你,你就别这么用了】
s.printHelloWorld();
}
}

搞清楚类方法和实例方法如何调用之后,接下来再啰嗦几句,和同学们聊一聊static修饰成员方法的内存原理

1
2
1.类方法:static修饰的方法,可以被类名调用,是因为它是随着类的加载而加载的;所以类名直接就可以找到static修饰的方法
2.实例方法:非static修饰的方法,需要创建对象后才能调用,是因为实例方法中可能会访问实例变量,而实例变量需要创建对象后才存在。所以实例方法,必须创建对象后才能调用。

关于static修饰成员变量、和静态修饰成员方法这两种用法,到这里就学习完了。

1.4 工具类

学习完static修饰方法之后,我们讲一个有关类方法的应用知识,叫做工具类

如果一个类中的方法全都是静态的,那么这个类中的方法就全都可以被类名直接调用,由于调用起来非常方便,就像一个工具一下,所以把这样的类就叫做工具类。

  • 我们写一个生成验证码的工具类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class MyUtils{
public static String createCode(int n){
//1.定义一个字符串,用来记录产生的验证码
String code = "";

//2.验证码是由所有的大写字母、小写字母或者数字字符组成
//这里先把所有的字符写成一个字符串,一会从字符串中随机找字符
String data = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKMNOPQRSTUVWXYZ";

//3.循环n次,产生n个索引,再通过索引获取字符
Random r = new Random();
for(int i=0; i<n; i++){
int index = r.nextInt(data.length());
char ch = data.charAt(index);
//4.把获取到的字符,拼接到code验证码字符串上。
code+=ch;
}

//最后返回code,code的值就是验证码
return code;
}
}
  • 接着可以在任何位置调用MyUtilscreateCOde()方法产生任意个数的验证码
1
2
3
4
5
6
//比如这是一个登录界面
public class LoginDemo{
public static void main(String[] args){
System.out.println(MyUtils.createCode());
}
}
1
2
3
4
5
6
//比如这是一个注册界面
public class registerDemo{
public static void main(String[] args){
System.out.println(MyUtils.createCode());
}
}

工具类的使用就是这样子的,学会了吗?

在补充一点,工具类里的方法全都是静态的,推荐用类名调用为了防止使用者用对象调用。我们可以把工具类的构造方法私有化

1
2
3
4
5
6
7
8
9
10
11
public class MyUtils{
//私有化构造方法:这样别人就不能使用构造方法new对象了
private MyUtils(){

}

//类方法
public static String createCode(int n){
...
}
}

1.5 static的注意事项

各位同学,到现在在我们已经学会了static修饰的变量、方法如何调用了。但是有一些注意事项还是需要给大家说明一下,目的是让大家知道,使用static写代码时,如果出错了,要知道为什么错、如何改正。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class Student {
static String schoolName; // 类变量
double score; // 实例变量

// 1、类方法中可以直接访问类的成员,不可以直接访问实例成员。
public static void printHelloWorld(){
// 注意:同一个类中,访问类成员,可以省略类名不写。
schoolName = "黑马";
printHelloWorld2();

System.out.println(score); // 报错的
printPass(); // 报错的

ystem.out.println(this); // 报错的
}

// 类方法
public static void printHelloWorld2(){

}

// 实例方法
public void printPass2(){

}

// 实例方法
// 2、实例方法中既可以直接访问类成员,也可以直接访问实例成员。
// 3、实例方法中可以出现this关键字,类方法中不可以出现this关键字的
public void printPass(){
schoolName = "黑马2"; //对的
printHelloWorld2(); //对的

System.out.println(score); //对的
printPass2(); //对的

System.out.println(this); //对的
}
}

1.6 static应用(代码块)

各位同学,接下来我们再补充讲解一个知识点,叫代码块;代码块根据有无static修饰分为两种:静态代码块、实例代码块

我们先类学习静态代码块:

1
2
3
4
5
6
7
8
9
10
//对类初始化
public class Student {
static int number = 80;
static String schoolName = "黑马";
// 静态代码块
static {
System.out.println("静态代码块执行了~~");
schoolName = "黑马";
}
}

静态代码块不需要创建对象就能够执行

1
2
3
4
5
6
7
8
9
10
public class Test {
public static void main(String[] args) {
// 目标:认识两种代码块,了解他们的特点和基本作用。
System.out.println(Student.number);
System.out.println(Student.number);
System.out.println(Student.number);

System.out.println(Student.schoolName); // 黑马
}
}

执行上面代码时,发现没有创建对象,静态代码块就已经执行了。

关于静态代码块重点注意:静态代码块,随着类的加载而执行,而且只执行一次。

再来学习一下实例代码块

实例代码块的作用和构造器的作用是一样的,用来给对象初始化值;而且每次创建对象之前都会先执行实例代码块。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Student{
//实例变量
int age;
//实例代码块:实例代码块会执行在每一个构造方法之前
{
System.out.println("实例代码块执行了~~");
age = 18;
System.out.println("有人创建了对象:" + this);
}

public Student(){
System.out.println("无参数构造器执行了~~");
}

public Student(String name){
System.out.println("有参数构造器执行了~~");
}
}

接下来在测试类中进行测试,观察创建对象时,实例代码块是否先执行了。

1
2
3
4
5
6
7
8
public class Test {
public static void main(String[] args) {
Student s1 = new Student();
Student s2 = new Student("张三");
System.out.println(s1.age);
System.out.println(s2.age);
}
}

对于实例代码块重点注意:实例代码块每次创建对象之前都会执行一次

1.7 static应用(单例设计模式)

各位同学,关于static的应用我们再补充一个使用的技巧,叫做单例设计模式

所谓设计模式指的是,一类问题可能会有多种解决方案,而设计模式是在编程实践中,多种方案中的一种最优方案。

关于静态的使用到这里,我们就学习完了。

二、继承

2.1 继承快速入门

各位同学,我们继续学习面向对象相关内容。面向对象编程之所以能够能够被广大开发者认可,有一个非常重要的原因,是因为它有三大特征,继承、封装和多态。封装我们在基础班已经学过了,接下来我们学习一下继承。

接下来,我们演示一下使用继承来编写代码,注意观察继承的特点。

1
2
3
4
5
6
7
8
9
10
11
12
13
public class A{
//公开的成员
public int i;
public void print1(){
System.out.println("===print1===");
}

//私有的成员
private int j;
private void print2(){
System.out.println("===print2===");
}
}

然后,写一个B类,让B类继承A类。在继承A类的同时,B类中新增一个方法print3

1
2
3
4
5
6
7
8
9
10
11
public class B extends A{
public void print3(){
//由于i和print1是属于父类A的公有成员,在子类中可以直接被使用
System.out.println(i); //正确
print1(); //正确

//由于j和print2是属于父类A的私有成员,在子类中不可以被使用
System.out.println(j); //错误
print2();
}
}

接下来,我们再演示一下,创建B类对象,能否调用父类A的成员。再写一个测试类

1
2
3
4
5
6
7
8
9
10
11
12
public class Test{
public static void main(String[] args){
B b = new B();
//父类公有成员,子类对象是可以调用的
System.out.println(i); //正确
b.print1();

//父类私有成员,子类对象时不可以调用的
System.out.println(j); //错误
b.print2(); //错误
}
}

到这里,关于继承的基本使用我们就算学会了。为了让大家对继承有更深入的认识,我们来看看继承的内存原理。

这里我们只需要关注一点:子类对象实际上是由子、父类两张设计图共同创建出来的

所以,在子类对象的空间中,既有本类的成员,也有父类的成员。但是子类只能调用父类公有的成员

2.2 继承的好处

各位同学,学习完继承的快速入门之后,接下来我们学习一下继承的好处,以及它的应用场景。

我们通过一个案例来学习

观察代码发现,我们会发现Teacher类中和Consultant类中有相同的代码;其实像这种两个类中有相同代码时,没必要重复写。

我们可以把重复的代码提取出来,作为父类,然后让其他类继承父类就可以了,这样可以提高代码的复用性。改造后的代码如下:

接下来使用继承来完成上面的案例,这里只演示People类和Teacher类,然后你尝试自己完成Consultant类。

  • 先写一个父类 People,用来设计Teacher和Consultant公有的成员。
1
2
3
4
5
6
7
8
9
10
public class People{
private String name;

public String getName(){
return name;
}
public void setName(String name){
this.name=name;
}
}
  • 再写两个子类Teacher继承People类,同时在子类中加上自己特有的成员。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Teacher extends People{
private String skill; //技能

public String getSkill(){
return skill;
}

public void setSkill(String skill){
this.skill=skill;
}

public void printInfo(){
System.out.println(getName()+"具备的技能:"+skill);
}
}
  • 最后再写一个测试类,再测试类中创建Teacher、Consultant对象,并调用方法。
1
2
3
4
5
6
7
8
9
10
11
public class Test {
public static void main(String[] args) {
// 目标:搞清楚继承的好处。
Teacher t = new Teacher();
t.setName("播仔");
t.setSkill("Java、Spring");
System.out.println(t.getName());
System.out.println(t.getSkill());
t.printInfo();
}
}

执行代码,打印结果如下:

关于继承的好处我们只需要记住:继承可以提高代码的复用性

2.3 权限修饰符

各位同学,在刚才使用继承编写的代码中我们有用到两个权限修饰符,一个是public(公有的)、一个是private(私有的),实际上还有两个权限修饰符,一个是protected(受保护的)、一个是缺省的(不写任何修饰符)。

接下来我们就学习一下这四个权限修饰符分别有什么作用。

什么是权限修饰符呢?

权限修饰符是用来限制类的成员(成员变量、成员方法、构造器…)能够被访问的范围

每一种权限修饰符能够被访问的范围如下

下面我们用代码演示一下,在本类中可以访问到哪些权限修饰的方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public class Fu {
// 1、私有:只能在本类中访问
private void privateMethod(){
System.out.println("==private==");
}

// 2、缺省:本类,同一个包下的类
void method(){
System.out.println("==缺省==");
}

// 3、protected: 本类,同一个包下的类,任意包下的子类
protected void protectedMethod(){
System.out.println("==protected==");
}

// 4、public: 本类,同一个包下的类,任意包下的子类,任意包下的任意类
public void publicMethod(){
System.out.println("==public==");
}

public void test(){
//在本类中,所有权限都可以被访问到
privateMethod(); //正确
method(); //正确
protectedMethod(); //正确
publicMethod(); //正确
}
}

接下来,在和Fu类同一个包下,创建一个测试类Demo,演示同一个包下可以访问到哪些权限修饰的方法。

1
2
3
4
5
6
7
8
9
public class Demo {
public static void main(String[] args) {
Fu f = new Fu();
// f.privateMethod(); //私有方法无法使用
f.method();
f.protectedMethod();
f.publicMethod();
}
}

接下来,在另一个包下创建一个Fu类的子类,演示不同包下的子类中可以访问哪些权限修饰的方法。

1
2
3
4
5
6
7
8
9
public class Zi extends Fu {
//在不同包下的子类中,只能访问到public、protected修饰的方法
public void test(){
// privateMethod(); // 报错
// method(); // 报错
protectedMethod(); //正确
publicMethod(); //正确
}
}

接下来,在和Fu类不同的包下,创建一个测试类Demo2,演示一下不同包的无关类,能访问到哪些权限修饰的方法;

1
2
3
4
5
6
7
8
9
10
11
12
public class Demo2 {
public static void main(String[] args) {
Fu f = new Fu();
// f.privateMethod(); // 报错
// f.method(); //报错
// f.protecedMethod();//报错
f.publicMethod(); //正确

Zi zi = new Zi();
// zi.protectedMethod();
}
}

2.4 单继承、Object

刚才我们写的代码中,都是一个子类继承一个父类,那么有同学问到,一个子类可以继承多个父类吗?

Java语言只支持单继承,不支持多继承,但是可以多层继承。就像家族里儿子、爸爸和爷爷的关系一样:一个儿子只能有一个爸爸,不能有多个爸爸,但是爸爸也是有爸爸的,但是一个爸爸可以有多个儿子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Test {
public static void main(String[] args) {
// 目标:掌握继承的两个注意事项事项。
// 1、Java是单继承的:一个类只能继承一个直接父类;
// 2、Object类是Java中所有类的祖宗。
A a = new A();
B b = new B();

ArrayList list = new ArrayList();
list.add("java");
System.out.println(list.toString());
}
}

class A {} //extends Object{}
class B extends A{}
// class C extends B , A{} // 报错
class D extends B{}

2.5 方法重写

各位同学,学习完继承之后,在继承的基础之上还有一个很重要的现象需要给大家说一下。

叫做方法重写。为了让大家能够掌握方法重写,我们先认识什么是方法重写,再说一下方法的应用场景。

什么是方法重写

当子类觉得父类方法不好用,或者无法满足父类需求时,子类可以重写一个方法名称、参数列表一样的方法,去覆盖父类的这个方法,这就是方法重写。

注意:重写后,方法的访问遵循就近原则。下面我们看一个代码演示

写一个A类作为父类,定义两个方法print1和print2

1
2
3
4
5
6
7
8
9
public class A {
public void print1(){
System.out.println("111");
}

public void print2(int a, int b){
System.out.println("111111");
}
}

再写一个B类作为A类的子类,重写print1和print2方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class B extends A{
// 方法重写
@Override // 安全,可读性好
public void print1(){
System.out.println("666");
}


// 方法重写
@Override
public void print2(int a, int b){
System.out.println("666666");
}
}

接下来,在测试类中创建B类对象,调用方法

1
2
3
4
5
6
7
8
public class Test {
public static void main(String[] args) {
// 目标:认识方法重写,掌握方法重写的常见应用场景。
B b = new B();
b.print1();
b.print2(2, 3);
}
}

执行代码,我们发现真正执行的是B类中的print1和print2方法

知道什么是方法重写之后,还有一些注意事项,需要和大家分享一下。

1
2
3
4
5
- 1.重写的方法上面,可以加一个注解@Override,用于标注这个方法是复写的父类方法
- 2.子类复写父类方法时,访问权限必须大于或者等于父类方法的权限
public > protected > 缺省
- 3. 重写的方法返回值类型,必须与被重写的方法返回值类型一样,或者范围更小
- 4. 私有方法、静态方法不能被重写,如果重写会报错。

关于这些注意事项,同学们其实只需要了解一下就可以了。实际上我们实际写代码时,只要和父类写的一样就可以( 总结起来就8个字:声明不变,重新实现

方法重写的应用场景

学习完方法重写之后,接下来,我们还需要大家掌握方法重写,在实际中的应用场景。方法重写的应用场景之一就是:子类重写Object的toString()方法,以便返回对象的内容。

比如:有一个Student类,这个类会默认继承Object类。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class Student extends Object{
private String name;
private int age;

public Student() {
}

public Student(String name, int age) {
this.name = name;
this.age = age;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}
}

其实Object类中有一个toString()方法,直接通过Student对象调用Object的toString()方法,会得到对象的地址值

1
2
3
4
5
6
7
public class Test {
public static void main(String[] args) {
Student s = new Student("播妞", 19);
// System.out.println(s.toString());
System.out.println(s);
}
}

但是,此时不想调用父类Object的toString()方法,那就可以在Student类中重新写一个toSting()方法,用于返回对象的属性值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
package com.itheima.d12_extends_override;

public class Student extends Object{
private String name;
private int age;

public Student() {
}

public Student(String name, int age) {
this.name = name;
this.age = age;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}

重新运行测试类,结果如下

好了,到这里方法什么是方法重写,以及方法重写的应用场景我们就学习完了。

2.6 子类中访问成员的特点

各位同学,刚才我们已经学习了继承,我们发现继承至少涉及到两个类,而每一个类中都可能有各自的成员(成员变量、成员方法),就有可能出现子类和父类有相同成员的情况,那么在子类中访问其他成员有什么特点呢?

  • 原则:在子类中访问其他成员(成员变量、成员方法),是依据就近原则的

定义一个父类,代码如下

1
2
3
4
5
6
7
public class F {
String name = "父类名字";

public void print1(){
System.out.println("==父类的print1方法执行==");
}
}

再定义一个子类,代码如下。有一个同名的name成员变量,有一个同名的print1成员方法;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class Z extends F {
String name = "子类名称";
public void showName(){
String name = "局部名称";
System.out.println(name); // 局部名称
}

@Override
public void print1(){
System.out.println("==子类的print1方法执行了=");
}

public void showMethod(){
print1(); // 子类的
}
}

接下来写一个测试类,观察运行结果,我们发现都是调用的子类变量、子类方法。

1
2
3
4
5
6
7
8
public class Test {
public static void main(String[] args) {
// 目标:掌握子类中访问其他成员的特点:就近原则。
Z z = new Z();
z.showName();
z.showMethod();
}
}
  • 如果子类和父类出现同名变量或者方法,优先使用子类的;此时如果一定要在子类中使用父类的成员,可以加this或者super进行区分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Z extends F {
String name = "子类名称";

public void showName(){
String name = "局部名称";
System.out.println(name); // 局部名称
System.out.println(this.name); // 子类成员变量
System.out.println(super.name); // 父类的成员变量
}

@Override
public void print1(){
System.out.println("==子类的print1方法执行了=");
}

public void showMethod(){
print1(); // 子类的
super.print1(); // 父类的
}
}

2.7 子类中访问构造器的特点

各位同学,我们知道一个类中可以写成员变量、成员方法,还有构造器。在继承关系下,子类访问成员变量和成员方法的特点我们已经学过了;接下来再学习子类中访问构造器的特点。

我们先认识子类构造器的语法特点,再讲一下子类构造器的应用场景

子类中访问构造器的语法规则

  • 首先,子类全部构造器,都会先调用父类构造器,再执行自己。

    执行顺序,如下图按照① ② ③ 步骤执行:

子类访问构造器的应用场景

  • 如果不想使用默认的super()方式调用父类构造器,还可以手动使用super(参数)调用父类有参数构造器。

在本类中访问自己的构造方法

刚才我们学习了通过super()super(参数)可以访问父类的构造器。有时候我们也需要访问自己类的构造器。语法如下

1
2
this(): 调用本类的空参数构造器
this(参数): 调用本类有参数的构造器

最后我们被this和super的用法在总结一下

1
2
3
4
5
6
7
8
9
10
11
12
13
访问本类成员:
this.成员变量 //访问本类成员变量
this.成员方法 //调用本类成员方法
this() //调用本类空参数构造器
this(参数) //调用本类有参数构造器

访问父类成员:
super.成员变量 //访问父类成员变量
super.成员方法 //调用父类成员方法
super() //调用父类空参数构造器
super(参数) //调用父类有参数构造器

注意:thissuper访问构造方法,只能用到构造方法的第一句,否则会报错。

day02——面向对象高级

今天我们继续学习面向对象的语法知识,我们今天学习的主要内容是:多态、抽象、接口。

学会这些语法知识,可以让我们编写代码更灵活,代码的复用性更高。

一、多态

接下来,我们学习面向对象三大特征的的最后一个特征——多态。

1.1 多态概述

什么是多态?

多态是在继承、实现情况下的一种现象,表现为:对象多态、行为多态

同一个行为具有多个不同表现形式或形态的能力,现实中,比如我们按下 F1 键这个动作:

  • 如果当前在 Flash 界面下弹出的就是 AS 3 的帮助文档;
  • 如果当前在 Word 下弹出的就是 Word 帮助;
  • 在 Windows 下弹出的就是 Windows 帮助和支持。

同一个事件发生在不同的对象上会产生不同的结果。

当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误;如果有,再去调用子类的同名方法。

比如:Teacher和Student都是People的子类,代码可以写成下面的样子

1.2 多态的好处

各位同学,刚才我们认识了什么是多态。那么多态的写法有什么好处呢?

在多态形式下,右边的代码是解耦合的,更便于扩展和维护。

  • 怎么理解这句话呢?比如刚开始p1指向Student对象,run方法执行的就是Student对象的业务;假如p1指向Teacher对象 ,run方法执行的自然是Teacher对象的业务。

定义方法时,使用父类类型作为形参,可以接收一切子类对象,扩展行更强,更便利。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Test2 {
public static void main(String[] args) {
// 目标:掌握使用多态的好处
Teacher t = new Teacher();
go(t);

Student s = new Student();
go(s);
}

//参数People p既可以接收Student对象,也能接收Teacher对象。
public static void go(People p){
System.out.println("开始------------------------");
p.run();
System.out.println("结束------------------------");
}
}

1.3 类型转换

虽然多态形式下有一些好处,但是也有一些弊端。在多态形式下,不能调用子类特有的方法,比如在Teacher类中多了一个teach方法,在Student类中多了一个study方法,这两个方法在多态形式下是不能直接调用的。

多态形式下不能直接调用子类特有方法,但是转型后是可以调用的。这里所说的转型就是把父类变量转换为子类类型。格式如下:

1
2
3
4
5
//如果p接收的是子类对象
if(父类变量 instance 子类){
//则可以将p转换为子类类型
子类 变量名 = (子类)父类变量;
}

如果类型转换错了,就会出现类型转换异常ClassCastException,比如把Teacher类型转换成了Student类型.

关于多态转型问题,我们最终记住一句话:原本是什么类型,才能还原成什么类型

二、final关键字

各位同学,接下来我们学习一个在面向对象编程中偶尔会用到的一个关键字叫final,也是为后面学习抽象类和接口做准备的。

2.1 final修饰符的特点

我们先来认识一下final的特点,final关键字是最终的意思,可以修饰类、修饰方法、修饰变量。

1
2
3
- final修饰类:该类称为最终类,特点是不能被继承
- final修饰方法:该方法称之为最终方法,特点是不能被重写。
- final修饰变量:该变量只能被赋值一次。
  • 接下来我们分别演示一下,先看final修饰类的特点

  • 再来演示一下final修饰方法的特点

  • 再演示一下final修饰变量的特点

    • 情况一

    • 情况二

    • 情况三

2.2 补充知识:常量

刚刚我们学习了final修饰符的特点,在实际运用当中经常使用final来定义常量。先说一下什么是Java中的常量?

  • 被 static final 修饰的成员变量,称之为常量。
  • 通常用于记录系统的配置信息

接下来我们用代码来演示一下

1
2
3
4
5
6
public class Constant {
//常量: 定义一个常量表示学校名称
//为了方便在其他类中被访问所以一般还会加上public修饰符
//常量命名规范:建议都采用大写字母命名,多个单词之前有_隔开
public static final String SCHOOL_NAME = "传智教育";
}
1
2
3
4
5
6
7
8
9
10
11
12
public class FinalDemo2 {
public static void main(String[] args) {
//由于常量是static的所以,在使用时直接用类名就可以调用
System.out.println(Constant.SCHOOL_NAME);
System.out.println(Constant.SCHOOL_NAME);
System.out.println(Constant.SCHOOL_NAME);
System.out.println(Constant.SCHOOL_NAME);
System.out.println(Constant.SCHOOL_NAME);
System.out.println(Constant.SCHOOL_NAME);
System.out.println(Constant.SCHOOL_NAME);
}
}
  • 关于常量的原理,同学们也可以了解一下:在程序编译后,常量会“宏替换”,出现常量的地方,全都会被替换为其记住的字面量。把代码反编译后,其实代码是下面的样子
1
2
3
4
5
6
7
8
9
10
11
public class FinalDemo2 {
public static void main(String[] args) {
System.out.println("传智教育");
System.out.println("传智教育"E);
System.out.println("传智教育");
System.out.println("传智教育");
System.out.println("传智教育");
System.out.println("传智教育");
System.out.println("传智教育");
}
}

三、抽象

同学们,接下来我们学习Java中一种特殊的类,叫抽象类。为了让同学们掌握抽象类,会先让同学们认识一下什么是抽象类以及抽象类的特点,再学习一个抽象类的常见应用场景。

3.1 认识抽象类

我们先来认识一下什么是抽象类,以及抽象类有什么特点。

  • 在Java中有一个关键字叫abstract,它就是抽象的意思,它可以修饰类也可以修饰方法。
1
2
- 被abstract修饰的类,就是抽象类
- 被abstract修饰的方法,就是抽象方法(不允许有方法体)

接下来用代码来演示一下抽象类和抽象方法

1
2
3
4
5
//abstract修饰类,这个类就是抽象类
public abstract class A{
//abstract修饰方法,这个方法就是抽象方法
public abstract void test();
}
  • 类的成员(成员变量、成员方法、构造器),类的成员都可以有。如下面代码,抽象类也可以有实例方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// 抽象类
public abstract class A {
//成员变量
private String name;
static String schoolName;

//构造方法
public A(){

}

//抽象方法
public abstract void test();

//实例方法
public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}
}
  • 抽象类是不能创建对象的,如果抽象类的对象就会报错

  • 抽象类虽然不能创建对象,但是它可以作为父类让子类继承。而且子类继承父类必须重写父类的所有抽象方法。
1
2
3
4
5
6
7
//B类继承A类,必须复写test方法
public class B extends A {
@Override
public void test() {

}
}
  • 子类继承父类如果不复写父类的抽象方法,要想不出错,这个子类也必须是抽象类
1
2
3
4
//B类基础A类,此时B类也是抽象类,这个时候就可以不重写A类的抽象方法
public abstract class B extends A {

}

3.2 抽象类的好处

接下来我们用一个案例来说一下抽象类的应用场景和好处。需求如下图所示

分析需求发现,该案例中猫和狗都有名字这个属性,也都有叫这个行为,所以我们可以将共性的内容抽取成一个父类,Animal类,但是由于猫和狗叫的声音不一样,于是我们在Animal类中将叫的行为写成抽象的。代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public abstract class Animal {
private String name;

//动物叫的行为:不具体,是抽象的
public abstract void cry();

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}
}

接着写一个Animal的子类,Dog类。代码如下

1
2
3
4
5
public class Dog extends Animal{
public void cry(){
System.out.println(getName() + "汪汪汪的叫~~");
}
}

然后,再写一个Animal的子类,Cat类。代码如下

1
2
3
4
5
public class Cat extends Animal{
public void cry(){
System.out.println(getName() + "喵喵喵的叫~~");
}
}

最后,再写一个测试类,Test类。

1
2
3
4
5
6
7
public class Test2 {
public static void main(String[] args) {
// 目标:掌握抽象类的使用场景和好处.
Animal a = new Dog();
a.cry(); //这时执行的是Dog类的cry方法
}
}

再学一招,假设现在系统有需要加一个Pig类,也有叫的行为,这时候也很容易原有功能扩展。只需要让Pig类继承Animal,复写cry方法就行。

1
2
3
4
5
6
public class Pig extends Animal{
@Override
public void cry() {
System.out.println(getName() + "嚯嚯嚯~~~");
}
}

此时,创建对象时,让Animal接收Pig,就可以执行Pig的cry方法

1
2
3
4
5
6
7
public class Test2 {
public static void main(String[] args) {
// 目标:掌握抽象类的使用场景和好处.
Animal a = new Pig();
a.cry(); //这时执行的是Pig类的cry方法
}
}

综上所述,我们总结一下抽象类的使用场景和好处

1
2
3
1.用抽象类可以把父类中相同的代码,包括方法声明都抽取到父类,这样能更好的支持多态,一提高代码的灵活性。

2.反过来用,我们不知道系统未来具体的业务实现时,我们可以先定义抽象类,将来让子类去实现,以方便系统的扩展。

3.3 模板方法模式

学习完抽象类的语法之后,接下来,我们学习一种利用抽象类实现的一种设计模式。先解释下一什么是设计模式?设计模式是解决某一类问题的最优方案

设计模式在一些源码中经常会出现,还有以后面试的时候偶尔也会被问到,所以在合适的机会,就会给同学们介绍一下设计模式的知识。

那模板方法设计模式解决什么问题呢?模板方法模式主要解决方法中存在重复代码的问题

比如A类和B类都有sing()方法,sing()方法的开头和结尾都是一样的,只是中间一段内容不一样。此时A类和B类的sing()方法中就存在一些相同的代码。

怎么解决上面的重复代码问题呢? 我们可以写一个抽象类C类,在C类中写一个doSing()的抽象方法。再写一个sing()方法,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
// 模板方法设计模式
public abstract class C {
// 模板方法
public final void sing(){
System.out.println("唱一首你喜欢的歌:");

doSing();

System.out.println("唱完了!");
}

public abstract void doSing();
}

然后,写一个A类继承C类,复写doSing()方法,代码如下

1
2
3
4
5
6
public class A extends C{
@Override
public void doSing() {
System.out.println("我是一只小小小小鸟,想要飞就能飞的高~~~");
}
}

接着,再写一个B类继承C类,也复写doSing()方法,代码如下

1
2
3
4
5
6
public class B extends C{
@Override
public void doSing() {
System.out.println("我们一起学猫叫,喵喵喵喵喵喵喵~~");
}
}

最后,再写一个测试类Test

1
2
3
4
5
6
7
public class Test {
public static void main(String[] args) {
// 目标:搞清楚模板方法设计模式能解决什么问题,以及怎么写。
B b = new B();
b.sing();
}
}

综上所述:模板方法模式解决了多个子类中有相同代码的问题。具体实现步骤如下

1
2
3
1步:定义一个抽象类,把子类中相同的代码写成一个模板方法。
2步:把模板方法中不能确定的代码写成抽象方法,并在模板方法中调用。
3步:子类继承抽象类,只需要父类抽象方法就可以了。

四、接口

同学们,接下来我们学习一个比抽象类抽象得更加彻底的一种特殊结构,叫做接口。在学习接口是什么之前,有一些事情需要给大家交代一下:Java已经发展了20多年了,在发展的过程中不同JDK版本的接口也有一些变化,所以我们在学习接口时,先以老版本为基础,学习完老版本接口的特性之后,再顺带着了解一些新版本接口的特性就可以了。

4.1 认识接口

我们先来认识一下接口?Java提供了一个关键字interface,用这个关键字来定义接口这种特殊结构。格式如下

1
2
3
4
public interface 接口名{
//成员变量(常量)
//成员方法(抽象方法)
}

按照接口的格式,我们定义一个接口看看

1
2
3
4
5
6
7
public interface A{
//这里public static final可以加,可以不加。
public static final String SCHOOL_NAME = "黑马程序员";

//这里的public abstract可以加,可以不加。
public abstract void test();
}

写好A接口之后,在写一个测试类,用一下

1
2
3
4
5
6
7
8
9
public class Test{
public static void main(String[] args){
//打印A接口中的常量
System.out.println(A.SCHOOL_NAME);

//接口是不能创建对象的
A a = new A();
}
}

我们发现定义好接口之后,是不能创建对象的。那接口到底什么使用呢?需要我注意下面两点

  • 接口是用来被类实现(implements)的,我们称之为实现类。
  • 一个类是可以实现多个接口的(接口可以理解成干爹),类实现接口必须重写所有接口的全部抽象方法,否则这个类也必须是抽象类

比如,再定义一个B接口,里面有两个方法testb1(),testb2()

1
2
3
4
public interface B {
void testb1();
void testb2();
}

接着,再定义一个C接口,里面有两个方法testc1(), testc2()

1
2
3
4
public interface C {
void testc1();
void testc2();
}

然后,再写一个实现类D,同时实现B接口和C接口,此时就需要复写四个方法,如下代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// 实现类
public class D implements B, C{
@Override
public void testb1() {

}

@Override
public void testb2() {

}

@Override
public void testc1() {

}

@Override
public void testc2() {

}
}

最后,定义一个测试类Test

1
2
3
4
5
6
7
8
9
public class Test {
public static void main(String[] args) {
// 目标:认识接口。
System.out.println(A.SCHOOL_NAME);

// A a = new A();
D d = new D();
}
}

4.2 接口的好处

同学们,刚刚上面我们学习了什么是接口,以及接口的基本特点。那使用接口到底有什么好处呢?主要有下面的两点

  • 弥补了类单继承的不足,一个类同时可以实现多个接口。
  • 让程序可以面向接口编程,这样程序员可以灵活方便的切换各种业务实现。

我们看一个案例演示,假设有一个Studnet学生类,还有一个Driver司机的接口,还有一个Singer歌手的接口。

现在要写一个A类,想让他既是学生,偶然也是司机能够开车,偶尔也是歌手能够唱歌。那我们代码就可以这样设计,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Student{

}

interface Driver{
void drive();
}

interface Singer{
void sing();
}

//A类是Student的子类,同时也实现了Dirver接口和Singer接口
class A extends Student implements Driver, Singer{
@Override
public void drive() {

}

@Override
public void sing() {

}
}

public class Test {
public static void main(String[] args) {
//想唱歌的时候,A类对象就表现为Singer类型
Singer s = new A();
s.sing();

//想开车的时候,A类对象就表现为Driver类型
Driver d = new A();
d.drive();
}
}

综上所述:接口弥补了单继承的不足,同时可以轻松实现在多种业务场景之间的切换。

4.3 接口的案例

各位同学,关于接口的特点以及接口的好处我们都已经学习完了。接下来我们做一个案例,先来看一下案例需求.

首先我们写一个学生类,用来描述学生的相关信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public class Student {
private String name;
private char sex;
private double score;

public Student() {
}

public Student(String name, char sex, double score) {
this.name = name;
this.sex = sex;
this.score = score;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public char getSex() {
return sex;
}

public void setSex(char sex) {
this.sex = sex;
}

public double getScore() {
return score;
}

public void setScore(double score) {
this.score = score;
}
}

接着,写一个StudentOperator接口,表示学生信息管理系统的两个功能。

1
2
3
4
public interface StudentOperator {
void printAllInfo(ArrayList<Student> students);
void printAverageScore(ArrayList<Student> students);
}

然后,写一个StudentOperator接口的实现类StudentOperatorImpl1,采用第1套方案对业务进行实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class StudentOperatorImpl1 implements StudentOperator{
@Override
public void printAllInfo(ArrayList<Student> students) {
System.out.println("----------全班全部学生信息如下--------------");
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
System.out.println("姓名:" + s.getName() + ", 性别:" + s.getSex() + ", 成绩:" + s.getScore());
}
System.out.println("-----------------------------------------");
}

@Override
public void printAverageScore(ArrayList<Student> students) {
double allScore = 0.0;
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
allScore += s.getScore();
}
System.out.println("平均分:" + (allScore) / students.size());
}
}

接着,再写一个StudentOperator接口的实现类StudentOperatorImpl2,采用第2套方案对业务进行实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
public class StudentOperatorImpl2 implements StudentOperator{
@Override
public void printAllInfo(ArrayList<Student> students) {
System.out.println("----------全班全部学生信息如下--------------");
int count1 = 0;
int count2 = 0;
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
System.out.println("姓名:" + s.getName() + ", 性别:" + s.getSex() + ", 成绩:" + s.getScore());
if(s.getSex() == '男'){
count1++;
}else {
count2 ++;
}
}
System.out.println("男生人数是:" + count1 + ", 女士人数是:" + count2);
System.out.println("班级总人数是:" + students.size());
System.out.println("-----------------------------------------");
}

@Override
public void printAverageScore(ArrayList<Student> students) {
double allScore = 0.0;
double max = students.get(0).getScore();
double min = students.get(0).getScore();
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
if(s.getScore() > max) max = s.getScore();
if(s.getScore() < min) min = s.getScore();
allScore += s.getScore();
}
System.out.println("学生的最高分是:" + max);
System.out.println("学生的最低分是:" + min);
System.out.println("平均分:" + (allScore - max - min) / (students.size() - 2));
}
}

再写一个班级管理类ClassManager,在班级管理类中使用StudentOperator的实现类StudentOperatorImpl1对学生进行操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class ClassManager {
private ArrayList<Student> students = new ArrayList<>();
private StudentOperator studentOperator = new StudentOperatorImpl1();

public ClassManager(){
students.add(new Student("迪丽热巴", '女', 99));
students.add(new Student("古力娜扎", '女', 100));
students.add(new Student("马尔扎哈", '男', 80));
students.add(new Student("卡尔扎巴", '男', 60));
}

// 打印全班全部学生的信息
public void printInfo(){
studentOperator.printAllInfo(students);
}

// 打印全班全部学生的平均分
public void printScore(){
studentOperator.printAverageScore(students);
}
}

最后,再写一个测试类Test,在测试类中使用ClassMananger完成班级学生信息的管理。

1
2
3
4
5
6
7
8
public class Test {
public static void main(String[] args) {
// 目标:完成班级学生信息管理的案例。
ClassManager clazz = new ClassManager();
clazz.printInfo();
clazz.printScore();
}
}

注意:如果想切换班级管理系统的业务功能,随时可以将StudentOperatorImpl1切换为StudentOperatorImpl2。自己试试

4.4 接口JDK8的新特性

各位同学,对于接口最常见的特性我们都学习完了。随着JDK版本的升级,在JDK8版本以后接口中能够定义的成员也做了一些更新,从JDK8开始,接口中新增的三种方法形式。

我们看一下这三种方法分别有什么特点?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public interface A {
/**
* 1、默认方法:必须使用default修饰,默认会被public修饰
* 实例方法:对象的方法,必须使用实现类的对象来访问。
*/
default void test1(){
System.out.println("===默认方法==");
test2();
}

/**
* 2、私有方法:必须使用private修饰。(JDK 9开始才支持的)
* 实例方法:对象的方法。
*/
private void test2(){
System.out.println("===私有方法==");
}

/**
* 3、静态方法:必须使用static修饰,默认会被public修饰
*/
static void test3(){
System.out.println("==静态方法==");
}

void test4();
void test5();
default void test6(){

}
}

接下来我们写一个B类,实现A接口。B类作为A接口的实现类,只需要重写抽象方法就尅了,对于默认方法不需要子类重写。代码如下:

1
2
3
4
5
6
7
8
9
10
11
public class B implements A{
@Override
public void test4() {

}

@Override
public void test5() {

}
}

最后,写一个测试类,观察接口中的三种方法,是如何调用的

1
2
3
4
5
6
7
8
9
public class Test {
public static void main(String[] args) {
// 目标:掌握接口新增的三种方法形式
B b = new B();
b.test1(); //默认方法使用对象调用
// b.test2(); //A接口中的私有方法,B类调用不了
A.test3(); //静态方法,使用接口名调用
}
}

综上所述:JDK8对接口新增的特性,有利于对程序进行扩展。

4.5 接口的其他细节

  • 一个接口可以继承多个接口
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class Test {
public static void main(String[] args) {
// 目标:理解接口的多继承。
}
}

interface A{
void test1();
}
interface B{
void test2();
}
interface C{}

//比如:D接口继承C、B、A
interface D extends C, B, A{

}

//E类在实现D接口时,必须重写D接口、以及其父类中的所有抽象方法。
class E implements D{
@Override
public void test1() {

}

@Override
public void test2() {

}
}

接口除了上面的多继承特点之外,在多实现、继承和实现并存时,有可能出现方法名冲突的问题,需要了解怎么解决(仅仅只是了解一下,实际上工作中几乎不会出现这种情况)

1
2
3
4
1.一个接口继承多个接口,如果多个接口中存在相同的方法声明,则此时不支持多继承
2.一个类实现多个接口,如果多个接口中存在相同的方法声明,则此时不支持多实现
3.一个类继承了父类,又同时实现了接口,父类中和接口中有同名的默认方法,实现类会有限使用父类的方法
4.一个类实现类多个接口,多个接口中有同名的默认方法,则这个类必须重写该方法。

综上所述:一个接口可以继承多个接口,接口同时也可以被类实现。

4.6 左接口右实现类:

1
List<Integer> list = new ArrayList<>();

声明左边为接口,右边为实现类,通常是指在变量声明中,左侧的类型是一个接口类型,而右侧是该接口的具体实现类的实例。这种方式的主要目的是为了提高代码的灵活性和可维护性。

注意:此时的list对象只能使用List接口中定义的方法(在ArrayList中实现的),而不能使用ArrayList中的别的方法,因为myList 被声明为 List<String> 类型

day03——面向对象高级

各位同学,前面两天我们已经把面向对象最主要的内容学习完了,剩下的这些语法知识学完,那么Java语法知识就算全齐活了。

今天学习的内容同学们学习起来会更轻松一些,有一些语法知识只需要了解一下就可以了,因为实际工作用得并不多。

我们先来了解第一个语法知识,内部类。

一、内部类

内部类是类中的五大成分之一(成员变量、方法、构造器、内部类、代码块),如果一个类定义在另一个类的内部,这个类就是内部类。

当一个类的内部,包含一个完整的事物,且这个事物没有必要单独设计时,就可以把这个事物设计成内部类。

比如:汽车、的内部有发动机,发动机是包含在汽车内部的一个完整事物,可以把发动机设计成内部类。

1
2
3
4
5
6
public class Car{
//内部类
public class Engine{

}
}

内部类有四种形式,分别是成员内部类、静态内部类、局部内部类、匿名内部类。

我们先来学习成员内部类

1.1 成员内部类

成员内部类就是类中的一个普通成员,类似于成员变量、成员方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class Outer {
private int age = 99;
public static String a="黑马";

// 成员内部类
public class Inner{
private String name;
private int age = 88;

//在内部类中既可以访问自己类的成员,也可以访问外部类的成员
public void test(){
System.out.println(age); //88
System.out.println(a); //黑马

int age = 77;
System.out.println(age); //77
System.out.println(this.age); //88
System.out.println(Outer.this.age); //99
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}
}
}

成员内部类如何创建对象,格式如下

1
2
3
4
//外部类.内部类 变量名 = new 外部类().new 内部类();
Outer.Inner in = new Outer().new Inner();
//调用内部类的方法
in.test();

总结一下内部类访问成员的特点

  • 既可以访问内部类成员、也可以访问外部类成员
  • 如果内部类成员和外部类成员同名,可以使用类名.this.成员区分

1.2 静态内部类

静态内部类,其实就是在成员内部类的前面加了一个static关键字。静态内部类属于外部类自己持有。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Outer {
private int age = 99;
public static String schoolName="黑马";

// 静态内部类
public static class Inner{
//静态内部类访问外部类的静态变量,是可以的;
//静态内部类访问外部类的实例变量,是不行的
public void test(){
System.out.println(schoolName); //99
//System.out.println(age); //报错
}
}
}

静态内部类创建对象时,需要使用外部类的类名调用。

1
2
3
//格式:外部类.内部类 变量名 = new 外部类.内部类();
Outer.Inner in = new Outer.Inner();
in.test();

1.3 局部内部类

局部内部类是定义在方法中的类,和局部变量一样,只能在方法中有效。所以局部内部类的局限性很强,一般在开发中是不会使用的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Outer{
public void test(){
//局部内部类
class Inner{
public void show(){
System.out.println("Inner...show");
}
}

//局部内部类只能在方法中创建对象,并使用
Inner in = new Inner();
in.show();
}
}

1.4 匿名内部类

1.4.1 认识匿名内部类,基本使用

接下来学习一种在实际开发中用得最多的一种内部类,叫匿名内部类。相比于前面几种内部类,匿名内部类就比较重要的。

我们还是先认识一下什么是匿名内部类?

匿名内部类是一种特殊的局部内部类;所谓匿名,指的是程序员不需要为这个类声明名字

下面就是匿名内部类的格式:

1
2
3
4
new 父类/接口(参数值){
@Override
重写父类/接口的方法;
}

匿名内部类本质上是一个没有名字的子类对象、或者接口的实现类对象。

比如,先定义一个Animal抽象类,里面定义一个cry()方法,表示所有的动物有叫的行为,但是因为动物还不具体,cry()这个行为并不能具体化,所以写成抽象方法。

1
2
3
public abstract class Animal{
public abstract void cry();
}

接下来,我想要在不定义子类的情况下创建Animal的子类对象,就可以使用匿名内部类

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test{
public static void main(String[] args){
//这里后面new 的部分,其实就是一个Animal的子类对象
//这里隐含的有多态的特性: Animal a = Animal子类对象;
Animal a = new Animal(){
@Override
public void cry(){
System.out.println("猫喵喵喵的叫~~~");
}
}
a.eat(); //直线上面重写的cry()方法
}
}

需要注意的是,匿名内部类在编写代码时没有名字,编译后系统会为自动为匿名内部类生产字节码,字节码的名称会以外部类$1.class的方法命名

匿名内部类的作用:简化了创建子类对象、实现类对象的书写格式。

1.4.2 匿名内部类的应用场景

学习完匿名内部类的基本使用之后,我们再来看一下匿名内部类在实际中的应用场景。其实一般我们会主动的使用匿名内部类。

只有在调用方法时,当方法的形参是一个接口或者抽象类,为了简化代码书写,而直接传递匿名内部类对象给方法。这样就可以少写一个类。比如,看下面代码

1
2
3
public interface Swimming{
public void swim();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class Test{
public static void main(String[] args){
Swimming s1 = new Swimming(){
@Override
public void swim(){
System.out.println("狗刨飞快");
}
};
go(s1);

Swimming s1 = new Swimming(){
@Override
public void swim(){
System.out.println("猴子游泳也还行");
}
};
go(s1);
}
//形参是Swimming接口,实参可以接收任意Swimming接口的实现类对象
public static void go(Swimming s){
System.out.println("开始~~~~~~~~");
s.swim();
System.out.println("结束~~~~~~~~");
}
}

二、枚举

2.1 认识枚举

2.1.1 认识枚举、枚举的原理

同学们,接下来我们学习一个新的知识点,枚举。枚举是我们以后在项目开发中偶尔会用到的知识。话不多说,我们还是先来认识一下枚举。

枚举是一种特殊的类,它的格式是:

1
2
3
public enum 枚举类名{
枚举项1,枚举项2,枚举项3;
}

其实枚举项就表示枚举类的对象,只是这些对象在定义枚举类时就预先写好了,以后就只能用这几个固定的对象。

我们用代码演示一下,定义一个枚举类A,在枚举类中定义三个枚举项X, Y, Z

1
2
3
public enum A{
X,Y,Z;
}

想要获取枚举类中的枚举项,只需要用类名调用就可以了

1
2
3
4
5
6
7
8
public class Test{
public static void main(String[] args){
//获取枚举A类的,枚举项
A a1 = A.X;
A a2 = A.Y;
A a3 = A.Z;
}
}

刚才说,枚举项实际上是枚举类的对象,这一点其实可以通过反编译的形式来验证(需要用到反编译的命令,这里不能直接将字节码拖进idea反编译)

我们会看到,枚举类A是用class定义的,说明枚举确实是一个类,而且X,Y,Z都是A类的对象;而且每一个枚举项都是被public static final修饰,所以被可以类名调用,而且不能更改。

2.1.2 枚举深入

既然枚举是一个类的话,我们能不能在枚举类中定义构造器、成员变量、成员方法呢?答案是可以的。来看一下代码吧

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public enum A{
//定义枚举项
X,Y,Z("张三"); //枚举项后面加括号,就是在执行枚举类的带参数构造方法。

//定义空构造器
public A(){

}

//成员变量
private String name;
//定义带参数构造器
public A(String name){
this.name=name;
}

//成员方法
public String getName(){
return name;
}
...
}

虽然枚举类中可以像类一样,写一些类的其他成员,但是一般不会这么写,如果你真要这么干的话,到不如直接写普通类来的直接。

2.2 枚举的应用场景

刚才我们认识了一下什么是枚举,接下来我们看一下枚举在实际中的运用,枚举的应用场景是这样的:枚举一般表示一组信息,然后作为参数进行传输。

我们来看一个案例。比如我们现在有这么一个应用,用户进入应用时,需要让用户选择是女生、还是男生,然后系统会根据用户选择的是男生,还是女生推荐不同的信息给用户观看。

这里我们就可以先定义一个枚举类,用来表示男生、或者女生

1
2
3
public enum Constant{
BOY,GRIL
}

再定义一个测试类,完成用户进入系统后的选择

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Test{
public static void main(String[] args){
//调用方法,传递男生
provideInfo(Constant.BOY);
}

public static void provideInfo(Constant c){
switch(c){
case BOY:
System.out.println("展示一些信息给男生看");
break;
case GRIL:
System.out.println("展示一些信息给女生看");
break;
}
}
}

最终再总结一下枚举的应用场景:枚举一般表示几个固定的值,然后作为参数进行传输

三、泛型

3.1 认识泛型

所谓泛型指的是,在定义类、接口、方法时,同时声明了一个或者多个类型变量(如:),称为泛型类、泛型接口、泛型方法、它们统称为泛型。

比如我们前面学过的ArrayList类就是一个泛型类,我们可以打开API文档看一下ArrayList类的声明。

ArrayList集合的设计者在定义ArrayList集合时,就已经明确ArrayList集合时给别人装数据用的,但是别人用ArrayList集合时候,装什么类型的数据他不知道,所以就用一个<E>表示元素的数据类型。

当别人使用ArrayList集合创建对象时,new ArrayList<String>就表示元素为String类型,new ArrayList<Integer>表示元素为Integer类型。

我们总结一下泛型的作用、本质:

  • 泛型的好处:在编译阶段可以避免出现一些非法的数据。

  • 泛型的本质:把具体的数据类型传递给类型变量。

3.2 自定义泛型类

接下来我们学习一下自定义泛型类,但是有一些话需要给大家提前交代一下:泛型类,在实际工作中一般都是源代码中写好,我们直接用的,就是ArrayList这样的,自己定义泛型类是非常少的。

自定义泛型类的格式如下

1
2
3
4
//这里的<T,W>其实指的就是类型变量,可以是一个,也可以是多个。
public class 类名<T,W>{

}

接下来,我们自己定义一个MyArrayList泛型类,模拟一下自定义泛型类的使用。注意这里重点仅仅只是模拟泛型类的使用,所以方法中的一些逻辑是次要的,也不会写得太严谨。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//定义一个泛型类,用来表示一个容器
//容器中存储的数据,它的类型用<E>先代替用着,等调用者来确认<E>的具体类型。
public class MyArrayList<E>{
private Object[] array = new Object[10];
//定一个索引,方便对数组进行操作
private int index;

//添加元素
public void add(E e){
array[index]=e;
index++;
}

//获取元素
public E get(int index){
return (E)array[index];
}
}

接下来,我们写一个测试类,来测试自定义的泛型类MyArrayList是否能够正常使用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class Test{
public static void main(String[] args){
//1.确定MyArrayList集合中,元素类型为String类型
MyArrayList<String> list = new MyArrayList<>();
//此时添加元素时,只能添加String类型
list.add("张三");
list.add("李四");

//2.确定MyArrayList集合中,元素类型为Integer类型
MyArrayList<Integer> list1 = new MyArrayList<>();
//此时添加元素时,只能添加String类型
list.add(100);
list.add(200);

}
}

关于自定义泛型类,你们把这个案例理解,对于初学者来说,就已经非常好了。

3.3 自定义泛型接口

在上一节中,我们已经学习了自定义泛型类,接下来我们学习一下泛型接口。泛型接口其实指的是在接口中把不确定的数据类型用<类型变量>表示。定义格式如下:

1
2
3
4
//这里的类型变量,一般是一个字母,比如<E>
public interface 接口名<类型变量>{

}

比如,我们现在要做一个系统要处理学生和老师的数据,需要提供2个功能,保存对象数据、根据名称查询数据,要求:这两个功能处理的数据既能是老师对象,也能是学生对象。

首先我们得有一个学生类和老师类

1
2
3
public class Teacher{

}
1
2
3
public class Student{

}

我们定义一个Data<T>泛型接口,T表示接口中要处理数据的类型。

1
2
3
4
5
public interface Data<T>{
public void add(T t);

public ArrayList<T> getByName(String name);
}

接下来,我们写一个处理Teacher对象的接口实现类

1
2
3
4
5
6
7
8
9
10
11
//此时确定Data<E>中的E为Teacher类型,
//接口中add和getByName方法上的T也都会变成Teacher类型
public class TeacherData implements Data<Teacher>{
public void add(Teacher t){

}

public ArrayList<Teacher> getByName(String name){

}
}

接下来,我们写一个处理Student对象的接口实现类

1
2
3
4
5
6
7
8
9
10
11
//此时确定Data<E>中的E为Student类型,
//接口中add和getByName方法上的T也都会变成Student类型
public class StudentData implements Data<Student>{
public void add(Student t){

}

public ArrayList<Student> getByName(String name){

}
}

再啰嗦几句,在实际工作中,一般也都是框架底层源代码把泛型接口写好,我们实现泛型接口就可以了。

3.4 泛型方法

同学们,接下来我们学习一下泛型方法。下面就是泛型方法的格式

1
2
3
public <泛型变量,泛型变量> 返回值类型 方法名(形参列表){

}

下图中在返回值类型和修饰符之间有定义的才是泛型方法。

接下我们看一个泛型方法的案例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Test{
public static void main(String[] args){
//调用test方法,传递字符串数据,那么test方法的泛型就是String类型
String rs = test("test");

//调用test方法,传递Dog对象,那么test方法的泛型就是Dog类型
Dog d = test(new Dog());
}

//这是一个泛型方法<T>表示一个不确定的数据类型,由调用者确定
public static <T> test(T t){
return t;
}
}

3.5 泛型限定

接着,我们来学习一个泛型的特殊用法,叫做泛型限定。泛型限定的意思是对泛型的数据类型进行范围的限制。有如下的三种格式

  • <?> 表示任意类型
  • <? extends 数据类型> 表示指定类型或者指定类型的子类
  • <? super 数据类型> 表示指定类型或者指定类型的父类

下面我们演示一下,假设有Car作为父类,BENZ,BWM两个类作为Car的子类,代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Car{}
class BENZ extends Car{}
class BWN extends Car{}

public class Test{
public static void main(String[] args){
//1.集合中的元素不管是什么类型,test1方法都能接收
ArrayList<BWM> list1 = new ArrayList<>();
ArrayList<Benz> list2 = new ArrayList<>();
ArrayList<String> list3 = new ArrayList<>();
test1(list1);
test1(list2);
test1(list3);

//2.集合中的元素只能是Car或者Car的子类类型,才能被test2方法接收
ArrayList<Car> list4 = new ArrayList<>();
ArrayList<BWM> list5 = new ArrayList<>();
test2(list4);
test2(list5);

//2.集合中的元素只能是Car或者Car的父类类型,才能被test3方法接收
ArrayList<Car> list6 = new ArrayList<>();
ArrayList<Object> list7 = new ArrayList<>();
test3(list6);
test3(list7);
}

public static void test1(ArrayList<?> list){

}

public static void test2(ArrayList<? extends Car> list){

}

public static void test3(ArrayList<? super Car> list){

}
}

3.6 泛型擦除

最后,关于泛型还有一个特点需要给同学们介绍一下,就是泛型擦除。什么意思呢?也就是说泛型只能编译阶段有效,一旦编译成字节码,字节码中是不包含泛型的。而且泛型只支持引用数据类型,不支持基本数据类型。

把下面的代码的字节码进行反编译

下面是反编译之后的代码,我们发现ArrayList后面没有泛型

四、常用API

各位同学,恭喜大家,到目前位置我们关于面向对象的语法知识就全部学习完了。接下来我们就可以拿着这些语法知识,去学习一个一个的API方法,掌握的API方法越多,那么Java的编程能力就越强。

API(Application Programming interface)意思是应用程序编程接口,说人话就是Java帮我们写好的一些程序,如:类、方法等,我们直接拿过来用就可以解决一些问题。

我们要学习那些API呢?把下面一种图中的所有类的常用方法学会了,那我们JavaSE进阶的课程就算你全学会了。

很多初学者给我反应的问题是,这些API一听就会,但是就是记住不!送同学们一句话

“千里之行始于足下,多记、多查、多些代码、孰能生巧!”

4.1 Object类

各位小伙伴,我们要学习的第一个API就是Object类。Object类是Java中所有类的祖宗类,因此,Java中所有类的对象都可以直接使用Object类中提供的一些方法。

按照下图的提示,可以搜索到你想要找的类

我们找到Object类的下面两个方法

  • 4.1.1 toString()方法

我们先来学习toString()方法。

1
2
3
public String toString()
调用toString()方法可以返回对象的字符串表示形式。
默认的格式是:“包名.类名@哈希值16进制”

假设有一个学生类如下

1
2
3
4
5
6
7
8
9
public class Student{
private String name;
private int age;

public Student(String name, int age){
this.name=name;
this.age=age;
}
}

再定义一个测试类

1
2
3
4
5
6
public class Test{
public static void main(String[] args){
Student s1 = new Student("赵敏",23);
System.out.println(s1.toString());
}
}

打印结果如下

如果,在Student类重写toString()方法,那么我们可以返回对象的属性值,代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Student{
private String name;
private int age;

public Student(String name, int age){
this.name=name;
this.age=age;
}

@Override
public String toString(){
return "Student{name=‘"+name+"’, age="+age+"}";
}
}

运行测试类,结果如下

4.1.2 equals(Object o)方法

接下来,我们学习一下Object类的equals方法

1
2
public boolean equals(Object o)
判断此对象与参数对象是否"相等"

我们写一个测试类,测试一下

1
2
3
4
5
6
7
8
9
10
11
public class Test{
public static void main(String[] args){
Student s1 = new Student("赵薇",23);
Student s2 = new Student("赵薇",23);

//equals本身也是比较对象的地址,和"=="没有区别
System.out.println(s1.equals(s2)); //false
//"=="比较对象的地址
System.out.println(s1==s2); //false
}
}

但是如果我们在Student类中,把equals方法重写了,就按照对象的属性值进行比较

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class Student{
private String name;
private int age;

public Student(String name, int age){
this.name=name;
this.age=age;
}

@Override
public String toString(){
return "Student{name=‘"+name+"’, age="+age+"}";
}

//重写equals方法,按照对象的属性值进行比较
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;

Student student = (Student) o;

if (age != student.age) return false;
return name != null ? name.equals(student.name) : student.name == null;
}
}

再运行测试类,效果如下

总结一下Object的toString方法和equals方法

1
2
3
4
5
6
7
public String toString()
返回对象的字符串表示形式。默认的格式是:“包名.类名@哈希值16进制”
【子类重写后,返回对象的属性值】

public boolean equals(Object o)
判断此对象与参数对象是否"相等"。默认比较对象的地址值,和"=="没有区别
【子类重写后,比较对象的属性值】

4.1.3 clone() 方法

接下来,我们学习Object类的clone()方法,克隆。意思就是某一个对象调用这个方法,这个方法会复制一个一模一样的新对象,并返回。

1
2
public Object clone()
克隆当前对象,返回一个新对象

想要调用clone()方法,必须让被克隆的类实现Cloneable接口。如我们准备克隆User类的对象,代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class User implements Cloneable{
private String id; //编号
private String username; //用户名
private String password; //密码
private double[] scores; //分数

public User() {
}

public User(String id, String username, String password, double[] scores) {
this.id = id;
this.username = username;
this.password = password;
this.scores = scores;
}

//...get和set...方法自己加上

@Override
protected Object clone() throws CloneNotSupportedException {
return super.clone();
}
}

接着,我们写一个测试类,克隆User类的对象。并观察打印的结果

1
2
3
4
5
6
7
8
9
10
11
public class Test {
public static void main(String[] args) throws CloneNotSupportedException {
User u1 = new User(1,"zhangsan","wo666",new double[]{99.0,99.5});
//调用方法克隆得到一个新对象
User u2 = (User) u1.clone();
System.out.println(u2.getId());
System.out.println(u2.getUsername());
System.out.println(u2.getPassword());
System.out.println(u2.getScores());
}
}

我们发现,克隆得到的对象u2它的属性值和原来u1对象的属性值是一样的。

上面演示的克隆方式,是一种浅克隆的方法,浅克隆的意思:拷贝出来的对象封装的数据与原对象封装的数据一模一样(引用类型拷贝的是地址值。如下图所示

还有一种拷贝方式,称之为深拷贝,拷贝原理如下图所示

下面演示一下深拷贝User对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class User implements Cloneable{
private String id; //编号
private String username; //用户名
private String password; //密码
private double[] scores; //分数

public User() {
}

public User(String id, String username, String password, double[] scores) {
this.id = id;
this.username = username;
this.password = password;
this.scores = scores;
}

//...get和set...方法自己加上

@Override
protected Object clone() throws CloneNotSupportedException {
//先克隆得到一个新对象
User u = (User) super.clone();
//再将新对象中的引用类型数据,再次克隆
u.scores = u.scores.clone();
return u;
}
}

4.2 Objects类

Objects是一个工具类,提供了一些方法可以对任意对象进行操作。主要方法如下

下面写代码演示一下这几个方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class Test{
public static void main(String[] args){
String s1 = null;
String s2 = "itheima";

//这里会出现NullPointerException异常,调用者不能为null
System.out.println(s1.equals(s2));
//此时不会有NullPointerException异常,底层会自动先判断空
System.out.println(Objects.equals(s1,s2));

//判断对象是否为null,等价于==
System.out.println(Objects.isNull(s1)); //true
System.out.println(s1==null); //true

//判断对象是否不为null,等价于!=
System.out.println(Objects.nonNull(s2)); //true
System.out.println(s2!=null); //true
}
}

4.3 基本类型包装类

同学们,接下来我们学习一下包装类。为什么要学习包装类呢?因为在Java中有一句很经典的话,万物皆对象。Java中的8种基本数据类型还不是对象,所以要把它们变成对象,变成对象之后,可以提供一些方法对数据进行操作。

Java中8种基本数据类型都用一个包装类与之对一个,如下图所示

我们学习包装类,主要学习两点:

    1. 创建包装类的对象方式、自动装箱和拆箱的特性;
    1. 利用包装类提供的方法对字符串和基本类型数据进行相互转换

4.2.1 创建包装类对象

我们先来学习,创建包装类对象的方法,以及包装类的一个特性叫自动装箱和自动拆箱。我们以Integer为例,其他的可以自己学,都是类似的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//1.创建Integer对象,封装基本类型数据10
Integer a = new Integer(10);

//2.使用Integer类的静态方法valueOf(数据)
Integer b = Integer.valueOf(10);

//3.还有一种自动装箱的写法(意思就是自动将基本类型转换为引用类型)
Integer c = 10;

//4.有装箱肯定还有拆箱(意思就是自动将引用类型转换为基本类型)
int d = c;

//5.装箱和拆箱在使用集合时就有体现
ArrayList<Integer> list = new ArrayList<>();
//添加的元素是基本类型,实际上会自动装箱为Integer类型
list.add(100);
//获取元素时,会将Integer类型自动拆箱为int类型
int e = list.get(0);

4.2.2 包装类数据类型转换

在开发中,经常使用包装类对字符串和基本类型数据进行相互转换。

  • 把字符串转换为数值型数据:包装类.parseXxx(字符串)
1
2
public static int parseInt(String s)
把字符串转换为基本数据类型
  • 将数值型数据转换为字符串:包装类.valueOf(数据);
1
2
public static String valueOf(int a)
把基本类型数据转换为
  • 写一个测试类演示一下
1
2
3
4
5
6
7
8
9
10
11
12
13
//1.字符串转换为数值型数据
String ageStr = "29";
int age1 = Integer.parseInt(ageStr);

String scoreStr = 3.14;
double score = Double.prarseDouble(scoreStr);

//2.整数转换为字符串,以下几种方式都可以(挑中你喜欢的记一下)
Integer a = 23;
String s1 = Integer.toString(a);
String s2 = a.toString();
String s3 = a+"";
String s4 = String.valueOf(a);